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Abstract. Calculations of the x-ray diffraction patterns from shocked crystals
derived from the results of Non-Equilibrium-Molecular-Dynamics (NEMD)
simulations are presented. The atomic coordinates predicted by the NEMD
simulations combined with atomic form factors are used to generate a discrete
distribution of electron density. A Fast-Fourier-Transform (FFT) of this
distribution provides an image of the crystal in reciprocal space, which can be
further processed to produce quantitative simulated data for direct comparison
with experiments that employ picosecond x-ray diffraction from laser-irradiated
crystalline targets.

PACS numbers: 31.15.xv,02.70.-c,02.30.Nw,61.05.C-,64.70.kd

1. Introduction

Non-Equilibrium Molecular-Dynamics (NEMD) simulations have started to provide
exceptional insights into the atomistic behaviour of materials under shock compression.
A significant amount of effort has concentrated on the study of the elastic-plastic
transition within both single and polycrystalline materials [1, 2, 3, 4] as well as
shock-induced polymorphic phase transitions [5, 6, 7]. In recent years, the impressive
advances in computing power and storage space that have been made permit the size
of such NEMD simulations to approach hundreds of millions (and in certain cases
billions) of atoms, corresponding to samples of side-length approaching a micron, for
simulated time-spans of up to hundreds of picoseconds [8, 9]. Given the vast amounts
of data that can be generated by such simulations, a judicious choice of data-reduction
and visualization systems is required in order to extract physical understanding
from the raw data comprising the time-dependence of atomic coordinates. To
date, most structural analysis has been limited to traditional short range methods 
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such as obtaining radial distribution functions, centrosymmetry parameters [10] and
coordination numbers.

However, simulations with these large spatial and temporal dimensions are
starting to approach conditions found in experiments where matter, of thickness
microns to several tens of microns, is shock compressed by high-power laser-matter
interactions, and diagnosed by (amongst other techniques) in situ x-ray diffraction
[11, 12]. These experiments have typically employed x-ray flashes of durations of
several hundred picoseconds to a few nanoseconds, although picosecond resolution has
been obtained by use of streak-camera technology [13], and laser-plasma x-ray sources
with durations of order 100-fsec can now be produced routinely [14]. It is also expected
that this field will benefit from the extremely bright femtosecond sources that will be
afforded by future x-ray free-electron-laser technology [15].

As the NEMD simulations provide direct physical insight into the shock-
deformation of materials at the lattice level, and the experimental and simulated
time and length scales are converging, it is appropriate to make direct comparisons
between the experimentally observed x-ray diffraction signals, and those predicted
by the NEMD simulations. Indeed, such connections have started to be made: for
example, Bringa and co-workers recently used NEMD simulations to calculate the
shift in both the Bragg (reflected) and Laue (transmitted) peaks in shock-compressed
copper [8], which were directly related to the time-dependent shape of the unit cell,
and via this provided information regarding the degree of plastic flow. Hawreliak et al.
directly compared the diffraction patterns predicted by NEMD with the experimental
data for the α − ε transition in shocked iron, noting, amongst many other things,
good agreement between the predicted x-ray line widths in the ε phase and those
seen experimentally - an observation which is consistent with the predicted mean size
of two families of domains with orthogonal c-axes [12]. However, whilst simulated
diffraction patterns have been presented, to date the procedure by which one can take
the output of a NEMD simulation and produce quantitative predictions of what will
be observed in an experiment has not been discussed in any detail. In this paper we
present such an analysis, outlining how to post-process the NEMD data to efficiently
produce diffraction patterns that can be directly compared with data obtained in
commonly-employed experimental geometries.

2. Calculation of Reciprocal Space

Neglecting the effects of absorption, and in the kinematic approximation, when an
x-ray of wavevector k0 is incident on a crystal, the intensity I(ks) of the elastically
scattered x-ray of wavevector ks = k0 + q is proportional to the modulus-squared
of the Fourier-component of the electron density of the lattice with reciprocal lattice
vector q. If, in a very simplified approach, we represent the atoms by point scatterers
located at the spatial coordinates provided by the MD simulation, then the scattered
intensity is given by

I(ks) ∝ |F (q)|2 ∝ |
N∑

j=1

Zj exp(iq · rj)|2 , (1)

where Zj is the atomic number of the j-th atom, located at position rj , and the sum is
over all N atoms within the crystal. Whilst such a simple calculation can be of use in
sampling specifically defined regions of reciprocal space which require the calculation
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of a very limited number of Fourier components (for example, a volume around a
particular Bragg peak), it is inefficient when applied to calculations of the full range
of reciprocal space due to the O(N2) computational operations required. Information
about the full range of reciprocal space is potentially useful in many situations: for
example to understand the polycrystalline response to shock compression, or to single
crystal analysis where the large defect densities generated may give rise to significant
scattering between the Bragg peaks.

Likewise performing an FT by this method is also sensible when the number
of atoms is small. However, it is because the number of atoms in modern NEMD
simulations is so large that this becomes prohibitive. While there is plenty of useful
information to be gained from small scale equilibrium MD simulations, applications
such as shock waves often require very large spatial and temporal dimensions in order
not to hinder effects such as defect motion and to avoid reflection from the boundaries.
In such NEMD simulations, the initial system, usually a perfect single crystal or a
many grained polycrystal, is thermalised under equilibrium conditions before being
deformed. As shock waves are assumed to be adiabatic there is no additional coupling
of the atoms to a heat bath in NEMD.

In order to calculate reciprocal space from a large scale NEMD simulation we
need a more efficient means of performing the Fourier Transform than that given in
Eq (1). The method we employ is the Fast Fourier Transform (FFT) approach, the
details of which are well known and will not be repeated here, save to recall that
an FFT is an efficient method to compute a Discrete Fourier Transform (DFT) in
O(N log2 N) operations rather than O(N2). Whereas the summation used in the
simple method of Eq (1) exploited the fact that the position vectors of the atoms
provided by the MD simulations could be used directly as delta functions, a DFT
requires an evenly spaced sample array in real space, making it unsuitable. However,
atomic coordinates from the MD actually represent the centres of atoms which have a
spatially extended electron distribution. By associating an electron distribution with
each atomic coordinate we can construct a discrete regular array of electron density
upon which we can perform the FFT.

Calculations of spherically-symmetric electron distributions for the elements are
available from a number of sources [16]. Certain very simple analytic forms exist which
represent the distributions in real space as a sum of a finite number of Gaussian profiles
[17]. The Fourier transform of these radial distributions, the atomic form factors, are
also available based on a number of approximations, such as the Thomas-Fermi or
Dirac-Fock methods [16], and we use such forms here for the quantitative calculation
of diffraction patterns.

Once an electron distribution has been associated with each atomic coordinate,
the level of real space sampling is determined by the range of interest in reciprocal
space, with the number of samples per unit cell in real space determining the range of
the transformation in reciprocal space. For example, if we wish to explore reciprocal
space out to the fifth order (based on a conventional unit cell in real space) then we
require a range of at least 10 reciprocal lattice vectors, corresponding to 10 samples
per side of a conventional unit cell, i.e. 103 over the conventional cell volume. On the
other hand the resolution in reciprocal space is determined by the number of unit cells
in the MD calculation, and hence the requirement for large MD simulations if we wish
to have high resolution in reciprocal space, and in the resultant calculated diffraction
patterns.
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Although we can use the physical electron distribution to calculate a realistic
array of electron density, it is advantageous to exploit this method for greater efficiency.
Difficulties arise because of the interplay between the width of the electron distribution
in real space and the radial extent of the intensity of the Fourier components in
reciprocal space. If the spatial profile is too narrow, the Fourier components in
reciprocal space could still have significant amplitude at the edges of the chosen range
of reciprocal space, resulting in the pattern being reflected back (as FFTs are periodic),
or overlapping, which is known as aliasing. On the other hand, too wide a profile in
real space for a chosen range of reciprocal space implies that the intensity of high
orders in reciprocal space will be too weak, and information may be lost. In cases
where we have selected a specific range of reciprocal space, we have found it useful
to choose a Gaussian profile in real space such that the 4σ position of the Gaussian
envelope (amplitude) in reciprocal space lies on the edge of the reciprocal space array.
Thus we are no longer assigning a physical electron density, but are instead ‘dressing’
each atomic coordinate with a Gaussian which allows us optimal control.

The approach of ‘dressing’ each atomic coordinate works due to the relationship
of a convolution in real space and multiplication in reciprocal space. The Fourier
transform of the real-space convolution of the atomic distribution function with a
Gaussian electron density is just the product of the Fourier transforms of the atomic
distribution function and the Gaussian profile. Therefore, the Fourier transform of
the atomic distribution function with a physically realistic electron density function
is just:

F [ADF
⊗

ρ(r)] = F [ADF
⊗

G(r)] × F [ρ(r)]
F [G(r)]

= F [ADF
⊗

G(r)] × F (k)
G̃(k)

,
(2)

where F is the Fourier transform operator, ADF is the atomic distribution function
which is simply a delta function placed at each of atomic coordinates taken from MD,
ρ(r) is the electron density for one atom, G(r) is the Gaussian profile of our choosing
in real space and hence G̃(k) is the Fourier transform of it and F (k) is the atomic
form factor which is the Frouier transform of ρ(r).

By exploiting the properties of Fourier transforms, using a non-physical radial
electron density in this way for convenience does not compromise the physical validity
of the calculation. By using a convenient Gaussian atomic electron density of know
width, we avoid aliasing, and we are able to infer the FFT of the atomic distribution.
After performing the FFT of the atomic distribution function convolved with the
Gaussian profile we can then divide by the Fourier transform of the Gaussian profile
(which we know analytically) to give us the FFT of the atomic distribution function.
We then proceed to multiply by the atomic form factor which produces output
equivalent to using the physically realistic electron density in the first place, as shown
in Eq (2).

It is evident that evaluating reciprocal space at high orders increases the size of
the calculation significantly, but given the number of atoms involved, the FFT is still
a more computationally efficient means of viewing reciprocal space compared with the
normal FT, unless only a very small sub-set of reciprocal space is of interest. For
example, calculating reciprocal space up to 5th order from several million atoms can
be computed in a matter of minutes on a typical workstation. The main limitation of
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the FFT method is the memory usage which is around 4GB per million unit cells if
calculating reciprocal space up to 5th order at single precision. Large shared memory
machines are particularly well suited to calculating FFTs of 10s or 100s of millions of
atoms. The method also works on MPI (Message Passing Interface) clusters, but with
the disadvantage of requiring extra memory for the FFT transposes and node overhead.
However, for analysis of MD simulations, it is often desirable to calculate reciprocal
space with some spatial resolution, and, as such, the sample can be divided up into
sections which can be calculated quickly on single nodes. Likewise on polycrystalline
or highly defected samples where it may be necessary to gain information about the
entire sample, the reciprocal peaks are often broad enough to allow a lower resolution,
and hence the intensities of smaller FFTs can be summed.

3. Quantitative Calculations

In section 4 we will show how we can post-process the representation of the crystal
in reciprocal space to obtain simulated diffraction patterns for specific experimental
geometries. This processing is reliant on the fact that the intensity of the scattered
radiation is proportional to the square of the relevant Fourier component, as stated
in eqn (1).

Although the spatial scales of MD simulations are starting to converge, it is still
generally the case that experiments use crystals of thickness between one and two
orders of magnitude greater than the simulations. Furthermore, there could often
be situations where due to constraints on computational resources it is desirable to
perform a simulation that has a spatial scale significantly smaller than that used in
an experiment, yet there is a requirement to have some predictive capability for the
experimental intensity to compare with features in the simulations. Therefore, in order
to have a means estimating what intensities might actually be found in an experiment,
we need to associate each value of |F (q)|2 in reciprocal space with a reflectivity that
corresponds to that which may be expected in the experimental configuration.

Such an association can be made by noting that the efficiency of scattering from a
single atom is known. If unpolarized X-rays of wavevector k0 are incident on a single
atom, and are elastically scattered into wavevector ks = k0 + q, then the differential
cross-section, dσ/dΩ is given by

dσ

dΩ
= r2

e
(1 + cos2 θ)

2
f2(|q|, Z) , (3)

where re is the classical radius of an electron, θ is the angle of deflection and f(|q|, Z)
is the atomic form factor for element Z, which is proportional to the Fourier transform
of the spherically-symmetric electronic density distribution discussed in section 2. Let
us consider the case where we have performed an NEMD simulation of a crystal which
contains N atoms,

dσ

dΩ
= r2

e
(1 + cos2 θ)

2
|

N∑

i=1

fi(|q|, Z)ei q.rj |2 . (4)

We note that if our system has only one type of atom the atomic form factor can be
separated out

dσ

dΩ
= r2

e
(1 + cos2 θ)

2
f2(|q|, Z)|

N∑

i=1

ei q.rj |2 , (5)
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and in this particular case we can easily remove the effect of the form factor after
performing the FFT by deconvolution with the Gaussian in Fourier space associated
with the form factor. Absolute intensities can be obtained by noting that as the
electron density is real, the rms value of the electron density within the system is
not a function of the correlations. This means that the integral of the intensity of
Fourier components of the electron density over the whole of reciprocal space is a
constant for a given number of atoms in a fixed volume. This is simply a form of
Parseval’s theorem which provides us with a means of normalizing the intensity of the
components in reciprocal space, such that a given intensity density in reciprocal space
corresponds to a quantitative measure of the scattered x-ray intensity.

This approach both neglects absorption within the crystal (and thus would not
be valid for crystal thicknesses approaching or exceeding an absorption depth), and
neglects the effect of extinction - that is to say re-scattering within the crystal. The
proper handling of extinction effects require wave-wave interactions that are described
by dynamical diffraction theory. The assumption of kinematic diffraction is likely to
be valid for crystals containing large numbers of defects, or large strain gradients, as
is the case in the shocked samples considered here. It may, however, not be a valid
assumption for diffraction from large unshocked regions of the crystal if the sample
has a high degree of perfection.

We can thus, using the above approach, calculate (within the approximations
given) an absolute scattered x-ray fraction from the MD simulation. Furthermore, it
is now simple to scale a calculated intensity. That is to say based on a simulation of a
small system, we can infer the intensity that would be scattered in a larger system (as
long as the path lengths of the scattered rays do not traverse distances greater than
of order an absorption depth), as the intensity in this case is directly proportional
to sample thickness. Of course, it may be that the physics of the MD simulation in
question cannot be scaled linearly, but that is a separate matter from the diffraction
calculation.

4. Experimental diffraction geometries

4.1. Single Crystal Diffraction

One of the primary motivations for this work is to enable the comparison of the
predictions of MD simulations with picosecond x-ray diffraction from laser-shocked
crystals. Once the FFT has been performed, and we have the values for the intensities
of the Fourier components |F (q)|2 in reciprocal lattice space (and know how these
can be translated into scattering cross-sections for an experimental sample), we can
proceed to calculate the pattern observed experimentaly. Our intent in this paper is
to outline how such calculations are performed, and give example output alongside
experimental results. We do not, however, go into detail concerning the physics that
may be gleaned from these comparisons, leaving such discussions for future work
dedicated to that specific purpose.

One of the most widely used experimental geometries for picosecond diffraction
from shocked crystals has been the diverging beam geometry [18], described by
Kalantar and co-workers [19] and explained in more detail in the appendix. In this
geometry, shown schematically in Fig. 1, the output of a high-power ns optical laser
is focused onto a thin foil, generating a highly ionized plasma which in turn emits
a short pulse of quasi-monochromatic x-rays. The x-ray source is approximated as
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an isotropic point-source for this simulation. Another laser beam is used to drive
the shock-wave in the crystal by ablating the front surface. The x-rays penetrate far
enough into the crystal to diffract from the regions both in front and behind the shock
front and the resulting lines are recorded on the surrounding film packs.

Target

Backlighter
beam

Drive beam

Diffracted X-rays

Figure 1. Experimental setup of single crystal diffraction from a diverging x-ray
point source. For illustration the path of some x-rays of 1.85Ådiffracting from the
(002) plane of Fe are shown.

To calculate the intensity incident on the film and hence the number of photons
per pixel, we sample the film by ray-tracing back to the point source using the Laue
formalism: q = ∆k = ks − k0, where k0 is the incident wave vector, ks the diffracted
wave vector and q a vector in reciprocal space with known scattering intensity.

For each sample on the film, x-rays can arrive via any point on the crystal surface
and as such the entire crystal needs to be well sampled for each film sample. We do
this by dividing up our crystal in the surface plane into an array of sub crystals, each
of which is illuminated by a collimated beam and hence corresponds to a single sample
in reciprocal space per film sample. Obviously the sub-crystal must be small enough
to be reasonably represented by a single reciprocal space sample which in turn can be
found by linearly interpolating our FFT output and multiplying by the appropriate
coefficients to calculate the cross-section. One advantage of sampling (as opposed to
photon mapping) in both the film and crystal planes is that the sampling need not be
uniform which can improve efficiency in certain situations.

As an example of this procedure we have simulated the diffraction from a single
crystal of iron shocked along the [001] axis. The NEMD simulation was performed
using the SPaSM code [20, 21] with the Voter-Chen potential [22]. A sample with
dimensions 40.2nm × 40.2nm × 57.4nm consisting of 8 million atoms were launched
along the [001] direction at a velocity of 471ms−1 into a momentum mirror. Previous
work using this potential have shown that at this particle velocity the iron undergoes
a transition from the body-centred-cubic α phase into the hexagonal-close-packed ε
phase. An image of the crystal after a simulation time of 8.46ps is shown in Fig. 2,
where the atoms are coloured according to coordination number. Here we can clearly
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see the 3 distinct sections consisting of the unshocked region coloured grey (right),
the uniaxially compressed region in blue (middle) and the phase changed region in red
(left). For further detail about the simulation one should refer to the original work
[6].

Figure 2. MD simulation of Fe shocked along [001] at 471ms−1. Atoms
are coloured according to coordination number displaying the unshocked region
coloured grey (right), the uniaxially compressed region in blue (middle) and the
phase changed region in red (left). From [6]. Reprinted with permission from
AAAS.

Using the atomic coordinates provided by the MD simulation, the diffraction
pattern was calculated according to the procedure described above. The reciprocal
space was calculated by using a real-space matrix of 1024 × 1024 × 1458 and hence
requiring 6GB of memory. This generated reciprocal space beyond 3.2 2π

a which is the
highest order experimentally accessible using Fe He-α X-rays at 1.85Å. This contains
140 samples per reciprocal unit cell in the x and y directions and 187 in the z direction
corresponding to the number of unit cells in each dimension. We set the origin of our
world coordinates to be the position of the x-ray point source and define the crystal
to be in the x-y plane, centred at (0,1.5, -1)mm. The crystal is 3 × 3mm in extent
with the crystallographic axis rotated by 13◦ around [001] to the world axis. In order
to calculate the absolute intensities we assumed the crystal had a thickness of 10µm
as in the experiment. The film packs are then positioned 60mm away with the normal
along the [011] direction. The main rectangle is 130mm in the [011] direction and
65mm along [100]. The triangular pack (used in the experiments) is then positioned
adjacent to this with the same extents but rotated inwards by 60◦. Some minor
rotations and offsets are then performed in order to fit the simulation to the exact
experimental geometry. To produce this figure the film was sampled at 200µm and
the crystal surface at 50µm resolution. Generating reciprocal space from an ASCII
file containing atomic coordinates took 3 minutes and the tracing took 40 minutes on
an 8-core Xeon Mac Pro. Lower quality but still meaningful figures can be traced in
a fraction of the time.

The simulated diffraction pattern is shown in Fig. 3 next to an example of
experimental data taken on the Vulcan laser [23] under experimental conditions very
similar to the work performed by Kalantar and co-workers [11]. The Fe single crystal
was coated with 20µm of parylene-N and driven with a 230J pulse at 1053nm and 6ns
duration. The x-ray source was generated with a 1ns pulse of approximately 150J at
527nm, delayed by 4.5ns with respect to the drive pulse. On both the simulated and
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Figure 3. Simulated (left) and experimental (right) film recordings of x-rays
diffracted from shock compressed iron. See text for details. Both clearly show
the unshocked, uniaxially compressed and phase changed lines. Miller indices
for several reflections are indicated. The plotted intensity is logarithmic for the
simulated diffraction with a range of 5 orders of magnitude with, a maximum
number of photons per unit area of 3× 10−3 m−2 of the total number emitted by
the source in the Helium alpha line.

experimental diffraction patterns the 3 lines corresponding to unshocked, uniaxially
compressed and phase changed lattice are clearly visible. This allows a direct
comparison of NEMD simulations with experimental results. Even without detailed
analysis we can clearly see that the strain in the uniaxailly compressed region differs
significantly between the NEMD simulation and the experiment from the position of
the line while the unshocked and HCP lines either side match well. The line widths
of the HCP features in the simulated and experimental data are comparable and
the peak intensities are within an order of magnitude (after background subtraction)
if we assume an x-ray conversion efficiency of 10−3 and sensitivity for Fujifilm MS
type-image plate of around 100 photons per unit PSL per pixel [24]. Given that the
image plate has a sensitivity of 5 orders of magnitude [25] and the images displayed
are logarithmic, we conclude that the estimated absolute intensities that would be
recorded are sufficiently accurate to aid in the design of experiments.

4.2. Polycrystalline Diffraction

Although many experiments involving picosecond diffraction from shocked materials
have been performed with single crystals, it has recently been shown that single shot
diffraction patterns can be obtained from polycrystalline samples using laser-plasma
x-ray sources [26]. In this case, a collimated beam of quasi-monochromatic radiation,
once more produced from the resonance lines of Helium-like atoms, is incident on a
foil of polycrystalline metal. In the experimental work of Hawreliak et al, the source
to foil distance was 5 cm, and the diffracted x-rays were recorded on a cylindrical
film pack co-axial with the incident x-rays. Here we simulate an experiment of similar
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dimensions, though we place a planar film pack behind the target in a normal Debye-
Scherrer geometry, with similar target to film distances as those used in the experiment
(conversion to a cylindrical film pack geometry provides no extra information). The
geometry is shown in schematic form in Fig. 4.

Target

Drive beam

Collimated
X-ray beam

Film

Figure 4. Polycrystalline experimental setup

In terms of the post-processing of the reciprocal space data, we note that in
this case the direction of the incident beam is fixed, and its orientation with respect
to the reciprocal space axes is simply determined by the angle ψ which the surface
normal of the foil makes to the incident beam. In this case the experimentally observed
diffraction pattern is determined by the angle of the ks vector as k0 is fixed in direction
by the collimation and in magnitude by the monochromatic nature of the source. As
a result, ks traces out a shell in reciprocal space which touches the origin. This in
turn intersects the shells of Ghkl of strong reflections, which are centred at the origin,
resulting in a pattern of rings on film - the well known Debye-Scherrer pattern.

In our calculations the crystal surface is placed at 45◦ to the collimated X-
ray beam. This allows the shell that is traced out by ks to intersect both the x-y
components (orthogonal to shock) and the z-components (shock direction) of the Ghkl

shells and hence give an indication of the level of compression along different crystal
axes.

As an example of this procedure we have simulated the diffraction from a poly-
crystal sample of Cu with X-rays of wavelength 1.48Å. The NEMD simulation was
performed using the LAMMPS package [27] using the Mishin EAM1 potential [28].
A sample with dimensions 72nm × 72nm × 72nm consisting of 30 million atoms
in approximately 3000 grains was used. The initial sample was created with the
Atomeye utilities [29] before undergoing energy minimisation by the conjugate gradient
algorithm and thermalisation at 300K. A piston was set moving into the sample at
900ms−1 and the simulation was run for 15ps to allow the shock wave to travel the
full extent of the sample which compressed by approximately 20% volumetrically.

In order to compare diffracted intensities with those observed experimentally, it
was assumed that the illuminated sample is a foil 25µm thick and 1mm square. The
diffraction was traced in the same manner as the single crystal case except that as
the beam is collimated only one sample on the crystal is needed for every sample
of the film. The target was placed 50mm from an x-ray point source and the beam
approximated as collimated. The 12×12cm film was then placed 15mm from the
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sample. The FFT was performed using 8 processors and 32 GB of RAM on an SGI
Altix 4700 in 26 minutes with the tracing taking seconds.

{111}

%%&''(

{200}
##)!!"

{220}
''*

Figure 5. Simulated diffraction from polycrystalline Cu. The figure is split with
the left side showing diffraction from the unshocked crystal and the right hand
side from the same crystal but shocked at 900ms−1. The plotted intensity is
logarithmic with a range of 5 orders of magnitude with a maximum number of
photons per unit area of 10−5 m−2 of the total number emitted by the source in
the Helium alpha line. See text for further details.

The diffraction patterns for both the unshocked (left) and shocked(right) foils are
shown in Fig. 5. The maximum intensity observed is once more within an order of
magnitude of those found in experiments. The expansion of the diffraction rings due
to a compression of the lattice is clearly visible in the shocked sample.

5. Summary

We have presented calculations of the x-ray diffraction patterns from shocked
crystals derived from the results of Non-Equilibrium-Molecular-Dynamics (NEMD)
simulations. The atomic coordinates predicted by the NEMD simulations combined
with atomic form factors are used to generate a discrete array of electron density.
A Fast-Fourier-Transform (FFT) of this array provides an image of the crystal in
reciprocal space, which can be further processed to produce simulated quantitative
data for direct comparison with experiments that employ picosecond x-ray diffraction
from laser-irradiated crystalline targets. Estimates of absolute intensities that may be
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observed in real experiments have been obtained from a knowledge of x-ray scattering
cross-sections, and scaling the intensity scattered by the MD predictions accordingly.
Good agreement is found between computed and experimental diffraction patterns,
and the technique should be useful in both designing novel experiments, as well as
in analysis of the signals obtained by using of picosecond diffraction from shocked
crystals.

6. Acknowledgments

The authors are grateful to a number of organizations for support. G.K is grateful
for partial support for this work from LLNL under subcontract No. B566832. B.N is
supported by the EU Marie-Curie RTN ‘FLASH’. J.H, D.K, H.L and B.R work under
the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344. H.L.
and J.H. also received partial support from LDRD program Project No. 06-SI-004
at LLNL. W.J.M. is grateful for support from AWE Aldermaston. A.H. has been
generously supported by Daresbury Laboratory under the auspices of the NorthWest
Science Fund. K.K. and T.G. work under the auspices of the National Nuclear Security
Administration of the U.S. Department of Energy at Los Alamos National Laboratory
under Contract No. DE-AC52-06NA25396. We also wish to thank P.S. Lomdahl and
B.L. Holian for valuable discussions. Simulations were performed on the QUEEG and
ORAC machines at the Oxford Supercomputing Centre.

7. Appendix: Experimental Geometry

In the diverging beam geometry, shown schematically in Fig. 1, a short pulse of
x-rays is generated by focussing the output of a high-power ns optical laser onto a
thin foil. The laser intensities are such that a highly ionized plasma is formed, and
copious x-rays are produced. Depending upon the element used, for laser intensities
in the range of 1014 to 1016 W cm−2, a significant fraction of the radiation is emitted
in the n = 2 → 1 resonance line of the Helium-like ion. These x-rays are quasi-
monochromatic in that alongside the resonance line itself, which corresponds to the
1s2p 1P → 1s2 1S transition, in the plasma environment there is also significant
emission in the intercombination line, 1s2p 3P → 1s2 1S, as well as emission into
dielectronic satellites. The fractional bandwidth of these transitions taken together is
of order 5 × 10−3. Typical conversion efficiencies from optical laser light into these
lines is of order 10−2 to 10−4 [30, 31], and typical source diameters are of order 100
µm.

The x-rays that are emitted from the hot plasma diverge into 4π steradians.
Therefore, in order to maximize the information gleaned from diffracting from the
shocked crystal, the x-ray source is placed close to the crystal (with typical source to
crystal distances of order 1 mm), such that the shocked crystal subtends a relatively
large solid angle to the x-ray source. The diameter of the region of the crystal which
is shocked by the laser, determined largely by considerations of the laser energy, is
typically of order 3 mm. X-rays diffracted from the shocked crystal are recorded on
large area flat film packs placed several cm from the crystal, which are arranged to
cover as large a solid angle as possible given the constraints imposed by experimental
considerations such as the need to provide access for the optical laser beams. When the
surface layer of thick crystals are shocked, the diffracted radiation is collected in the
reflection geometry (so-called Bragg diffraction). Experiments with thin crystals, with
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thicknesses of order 10µm, have also simultaneously allowed diffraction in transmission
geometry (so-called Laue diffraction). The scattered x-rays are recorded on either x-
ray film or image plates. The direct path between the x-ray source and film packs is
obscured by highly absorbing beam blocks.
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